Chesapeake Bay Total Maximum Daily Load Indicator

Chesapeake Bay Commission

Gary Shenk USGS@CBPO

5/2/2024

Total Maximum Daily Load (TMDL)

What management practices...

.... will reduce nitrogen, phosphorus, and sediment to levels ...

.... that will achieve levels of dissolved oxygen, clarity, and chlorophyll in the Bay...

... that are supportive of living resources?

CBP Decision Support System

What management practices...

Bay TMDL Summary

.... will reduce nitrogen and phosphorus to levels that will achieve appropriate dissolved oxygen, clarity, and chlorophyll in the Bay?

Nutrient Targets

			2018 Planning Targets	
Major	State		approved by PSC	
Major	State	StateBasin	Nitrogen	Phosphorus
Potomac	DC	DC Potomac	2.42	0.130
Eastern Shore	DE	DE Eastern Shore	4.55	0.108
Eastern Shore	MD	MD Eastern Shore	15.21	1.286
Patuxent	MD	MD Patuxent	3.21	0.301
Potomac	MD	MD Potomac	15.30	1.092
Susquehanna	MD	MD Susquehanna	1.18	0.053
Western Shore	MD	MD Western Shore	10.89	0.948
Susquehanna	NY	NY Susquehanna	11.53	0.587
Eastern Shore	PA	PA Eastern Shore	0.45	0.025
Potomac	PA	PA Potomac	6.11	0.357
Susquehanna	PA	PA Susquehanna	66.59	2.661
Western Shore	PA	PA Western Shore	0.02	0.001
Eastern Shore	VA	VA Eastern Shore	1.43	0.164
James	VA	VA James	25.92	2.731
Potomac	VA	VA Potomac	16.00	1.892
Rappahannock	VA	VA Rappahannock	6.85	0.849
York	VA	VA York	5.52	0.556
James	WV	WV James	0.04	0.005
Potomac	WV	WV Potomac	8.18	0.427

- Nutrient loads in million lbs/year
 - Watershed model (CAST) used to assess progress toward these goals

• Why not use monitoring directly?

Photo credit: CBP

Natural System

Monitoring

Modeling

Photo credit: CBP

Natural System

Monitoring

Reality But Imprecise Incomplete

Photo credit: CBP

Modeling

Photo credit: CBP

Precise

Complete

Not Reality

But

Photo credit: CBP

WIP Indicator

We have implemented much of the plan

Agriculture

Developed

Wastewater

Septic

Natural

Atmospheric

Deposition to Watershed

Atmospheric

Water

Deposition to Tidal

Modeled Nitrogen Loads to the Chesapeake Bay (1985-2021)

Loads simulated using CAST19 and jurisdiction-reported data on wastewater discharges. *The natural sector wetlands which are preferable land use types with the lowest loading rates among sources.

https://www.chesapeakeprogress.com/clean-water/watershed-implementation-plans

Nontidal Load Indicator

Pollution Loads and River Flow to the Chesapeake Bay (1990-2021)

River and Watershed Input of Pollution Loads. Years denote the water year measured between October 1 and September 30.

https://www.chesapeakeprogress.com/clean-water/water-quality

Tidal Water TMDL Indicator

Very slow positive change

Water Quality Standards Attainment (1985-2021) 🧖

Water quality is evaluated using three parameters: dissolved oxygen, water clarity or underwater grass abundance, and chlorophyll a (a measure of algae growth).

VIEW CHART VIEW TABLE

STAC Comprehensive Evaluation of System Response Report

bundance, and chlorophyll a (a

- Why do we have this gap?
- Nonpoint source not generating enough reductions.
- Are we getting the nitrogen and phosphorus reductions predicted by the modeling system?

Chesapeake Governance Study D.G. Webster, Dartmouth College

What about the watershed model (CAST) should be improved?

Chesapeake Bay TMDL Indicator: Total Nitrogen

This indicator combines monitored and modeled data to estimate the progress of annual pollution loading rate reductions since 1995 in response to implemented management practices.

https://www.chesapeakeprogress.com/clean-water/water-quality

VIEW CHART

VIEW TABLE

Chesapeake Bay TMDL Indicator: Total Phosphorus

This indicator combines monitored and modeled data to estimate the progress of annual pollution loading rate reductions since 1995 in response to implemented management practices.

https://www.chesapeakeprogress.com/clean-water/water-quality

VIEW CHART

VIEW TABLE

Individual station interface

Example 1: 01646580 Potomac River Total Nitrogen

Interpretive Text

- 1. CAST estimates a 28 percent reduction in the long term from implementation of the WIP using 2025 land use and inputs.
- 2. CAST estimates a 19 percent reduction in the long term from **2020** land use, inputs, and management practices.
- 3. The Dynamic Watershed Model estimates that only a 11 percent reduction would have been seen by 2020, accounting for lags, sampling frequency, and other factors.
- 4. The river monitoring data show a 13 percent reduction with a 90% uncertainty range between 6 and 23 percent reduction.

Implication: The observed response is <u>as expected</u> over the period of 1995-2020.

01646580 POTOMAC RIVER AT CHAIN BRIDGE, AT WASHINGTON, DC (1995-2020)

Example 2: 01491000 Choptank River Total Nitrogen

Interpretive Text

- 1. CAST estimates a 38 percent reduction in the long term from implementation of the WIP using 2025 land use and inputs.
- 2. CAST estimates a 6 percent reduction in the long term from **2020** land use, inputs, and management practices.
- 3. The Dynamic Watershed Model estimates that only a 2 percent reduction would have been seen by 2020, accounting for lags, sampling frequency, and other factors.
- 4. The river monitoring data show a 20 percent increase with a 90% uncertainty range between 15 and 24 percent increase.

Implication: The observed response is less than expected over the period of 1995-2020.

Example 3: 01553500 West Branch Susquehanna River Total Nitrogen

Interpretive Text

- 1. CAST estimates a 29 percent reduction in the long term from implementation of the WIP using 2025 land use and inputs.
- 2. CAST estimates a 19 percent reduction in the long term from 2020 land use, inputs, and management practices.
- 3. The Dynamic Watershed Model estimates that only a 10 percent reduction would have been seen by 2020, accounting for lags, sampling frequency, and other factors.
- 4. The river monitoring data show a 25 percent reduction with a 90% uncertainty range between 17 and 33 percent reduction.

Implication: The observed response is <u>more than expected</u> over the period of 1995-2020.

Reception and Uses

- Significant interest from across the CBP
- Facilitates conversations comparing modeled and monitored outcomes
 - Have we implemented enough?
 - Are we seeing the expected results?
 - How does my watershed compare to similar watersheds?
- Invites research questions
 - Why are we seeing lower response in phosphorus?
 - Are there similar responses for similar watersheds?
 - What is happening in specific watersheds?

Why Now?

- Models with lag estimates
- Long-term monitoring data
- Statistical analysis methods

STAC CESR report Prominent Authorship from VA Tech

• Qian Zhang (UMCES)

• Isabella Bertani (UMCES)

Chesapeake Bay Total Maximum Daily Load Indicator

Chesapeake Bay Commission

Gary Shenk USGS@CBPO

5/2/2024